Diego A Pea L&S Sciences
Characterization of Optical Pumping of Ti Beam into a Metastable State
Laser cooling and trapping consists of using lights momentum to slow down and eventually confine atoms to small regions of space using light and magnetic fields. These techniques have been demonstrated with many elements in the periodic table, yet most transition metals are still to be addressed. A current effort in the Stamper-Kurn group seeks to implement laser cooling on titanium, eventually trapping and cooling it to quantum degeneracy. Cooling titanium requires that atoms exist in the a5F5 metastable state, an atomic internal state with energy higher than the ground state but with a relatively long lifetime compared to an excited state. One method of creating metastable titanium atoms is by optically pumping titanium from the ground state a3F4 to the y5G5 excited states where atoms can decay to the metastable state. My project focuses on characterizing the efficiency of such method of optical pumping using 379 nm and 844 nm light. This includes the construction and characterization of the 844 nm light beam which will be generated using a tunable external cavity diode laser